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Executive Summary

We aim to build a useable and
comprehensive recommendation
system for music recommendation.

Compared and combined popularity
based, collaborative filtering based,
and content-based methods to build
a recommending strategy for different
scenarios and different users

Based on the Million Song Dataset
and musiXmatch dataset, which
include user listening history, song
metadata, artist, artist similarity, and
lyrics.

The whole system was built utilizing
python and pyspark on Google Cloud
Platform.



Business Problem

= Anincreasing number of online companies are utilizing recommendation systems to
increase user interaction and enrich business potential.

= The potential benefits of a state of art recommender system:
v Improve user retention
v Improve user engagement
v Understand changing trend of the customers’ tastes

= We want to focus on the streaming music industry and develop an industry level music
recommendation system under different scenarios and for different users.



Data Description

The Echo Nest, 2011

musiXmatch

Taste Profile

Size: 280GB (Subset)

1,000,000 unique tracks ID

Song Metadata, Artist similarity, Artist tags
SQLite, Text Files

Main Dataset Link

Size: 70MB

779K matches between of musiXmatch ID & MSD ID
210,519 BOW for training & 27,143 BOW for testing
SQlite & Text Files

Complementary Dataset Link

Size: 488MB

48M user-song-play count triplets
1M unique users

380K unique songs

Tab-delimited

Complementary Dataset Link



http://millionsongdataset.com/pages/getting-dataset/
http://millionsongdataset.com/musixmatch/
http://millionsongdataset.com/tasteprofile/
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Algorithm Development | Collaborative Filtering

ALS
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from pyspark.ml.recommendation import ALS
from pyspark.ml.evaluation import RegressionEvaluator

# initialization

als = ALS().setMaxIter(5)\
.setItemCol("new trackid")\
.setRatingCol("frequency")\
.setUserCol ("new userid")

# evaluation metric - RMSE

eval metric = RegressionEvaluator(predictionCol="prediction",
labelCol="frequency",
metricName="rmse")

# hyper parameter space for cross validation - grid search

ranks = [4, 6, 8, 10, 12, 14, 16]

regParams = [0.1, 0.15, 0.25, 0.27, 0.3, 0.32, 0.35, 0.38]
errors = [[0]*len(ranks)]*len(regParams)

models = [[0]*len(ranks)]*len(regParams)

min_error = float('inf')

i=0



Algorithm Development | Content-Based Filtering

TFIDF
Cosine Similarity

Word2Vec

User Inputs
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Algorithm Development | Content-Based Filtering

Features Creation

Method 1: TFIDF for Lyrics

Tn [4]: tfidf

Out[4]: <142263x4788 sparse matrix of type '<class 'numpy.floatsd':'

with 7669181 stored elements in Compressed Sparse Row format:>

Method 2: Word2vec for Lyrics Method 3: LDA for Lyrics

In [45]:  # Fit lda model
1da = models.LdaModel (lyric2['corpus'], id2word=dictionary, num_topics=10)
# Topic matrix (V matrix)
lda.print_topics(10)

In [61]: avg_wv_train_features

out[45]: [(e,

Out[61]:

'0.018*"know" + 0.016%"time" + 8.014*"never” + 0.012*"see" + 0.011*"feel” + 0.011%*"would" + 0.011*"away" + 0.010*"ca" +

array([[-0.
-0.
[ 0.
-0.
[ 0.
-0.

©38208242, -0.85298882, ©0.09911916,

08228926, 0.
@633%9@3 , -0.
06406712, -0.
B6679964, -0.
©B2071588, -0.

.909608958, -6.
.05000849, -0.
.13831788, -8.
.00664195, -0.
.80928513, -6.
.13902934, 8.

19541479],

973359671,
1390753 ,
91962863],

P6986092],
P0502665],

12776261,
20370942]1)

18454169, -0.

-8.

145978793, -0.
14230888, -0.

8.

1823@766,

12681464,

13793814,
91359256,

05008366,

-8.455%89

.21158542,

.28258462,

.24237069,

.33358136,

.2427845

>

*one” + 0.010%"go"'),

(1,

'0.060%"1a" + 0.053*"de" + 0.049*"que" + 0.023*"en" + 0.022*"el" + 0.020*"1e" + 0.019*"tu" + 0.017*"te" + 0.016*"un" + 0.016
nitt),

(2,

'0.855%"ich" + 0.048*"da"™ + ©.042*"und" + ©.839*"die" +
0.017*"ein""),

3,
'0.010*"die" + 0.010*"god" + 0.008*"world" + ©.808*"soul" +
*"life" + 0.007*"fire"'),

(a,
'0.187*"love" + 0.086%*"na" + ©.83%9*"gon" + 0.833*"wan" + 0.021*"know" + 0.019*"give" + ©.018*"need" + 0.018*"let" + 0.016*"ma
ke" + 0.016%"want"'),

(s,

'0.030%"de" + 0.028*"que" + 0.025*"e" + 0.021*"eu" + 0.018*"det" + 0.017*"jag" + 0.017*"du" + 0.016*"nao" + 0.015*"é" + 0.014
*'en""),

(6,
'0.057%"e" + 0.050*"di" + 0.845%*"che" + ©.839%*"non" + 0.032*"1a" + 0.027*"il" + 0.025*"mi" + ©.022*"un" + ©.021*"ha" + 0.018
*"per"*),

@,
'0.088%"oh" + 0.060*"babi" + ©.857*"yeah" + ©.025*"know" + 0.024*"girl" + 0.023*"hey" + 0.023*"got" + 0.020*"come" + 0.019*"w
ant" + ©9.016%"go" "),

(s,

'0.019%"got" + 0.016%"get" + 0.015*"like" + ©.011*"go" + 0.008*"man" + 0.008*"1ittl" + ©.007*"back" + ©.007*"one" + 0.007*"we
11" + 0.007*"said""),

(o,
'0.029%"get" + 0.023%"like" + 0.022*"got" + 0.014*"ya" + 8.011%"nigga" +
*"cau" + 0.009*"yo"')]

0.024*"du" + 0.022*"der" + 0.021*"nicht"” + 0.019*"ist" + 8.019*"es" +

0.008*"burn" + 8.007*"us" + 0.007*"blood"” + 0.007*"dead" + 0.007

0.011*"fuck" + 0.011*"shit™ + 0.010*"know" + 0.009



Algorithm Development | Content-Based Filtering

Cosine Similarity Calculation System Building

In [16]: indices = pd.Series(lyric['track_id'])

In [17]: # Define a function to get the similar track based on the cosine similarity
def recommend_id(track_id, cosine_sim):
if len(indices[indices == track_id]) !'= @:

global idx
idx = indices[indices == track_id].index[@]
score_series = pd.Series{cosine_sim[idx]).sort_values(ascending = False)
topl@_indexes = list(score_series.iloc[1:11].index)
M DI I recommend_trackid = lyric.iloc[topl@_indexes][['track_id']]
recommend_track = recommend_trackid.merge(track_meta[[ 'track_id', ‘'artist name', "title']],
how="inner’, on='track_id')[['artist name', 'title']]

term 2

else:
recommend_track = pd.DataFrame()
return recommend_track

sentence n

def recommend_title(title, artist, cosine_sim):
similar_artist = {}
recommended = pd.DataFrame()

sentence 2

# Match the track id and artist id with the song title and artist name
track_input = track_meta.loc[track_meta['title’]==title].loc[track_meta['artist_name']==artist,

["track_id', "artist_id']].reset_index(drop=True)

el

tid = track_input[‘'track_id'][@] #single track id
aid = track_input[artist_id'][@] #single artist id
said = artist_sim.loc[artist_sim['target’]==aid, 'similar_artist'] #similar artists Llist
___________________ -» recommended = recommended.append(track_meta.loc[track_meta[ "track_id']==tid, ['artist_name', "title']])
term 1 # recommended based on cosine similarity

recommended = recommended.append(recommend_id(tid, cosine_sim))
# recommend based on similar artist
for i in said.values[@]:
stid = track_meta.loc[track_meta['artist_id']==i, 'track_id"].values
if len(stid) > o:
for j in stid:

(((‘ "’ if len(indices[indices == j]) I= @:
@ ’ sentBnGB ’l ::::l{x = indices[indices == j].index[0]
” 3
” similar_artist[j] = cosine_sim[idx][sidx]
‘ except IndexError:
continue

similar_artist df = pd.DataFrame(similar_artist.items(),
columns = ['track id', 'cosine_smilarity']).sort_values(by='cosine smilarity’,
ascending = False)
recommend_strack = similar_artist df[['track_id']][:1@].merge(track_meta[['track_id', 'artist name', 'title']],
how="inner', on='track id')[['artist name', 'title']]
recommended = recommended.append(recommend_strack)
return recommended.reset_index(drop=True)

In [1]: title = input('Please enter the song name:')

Please enter the song name:Soul Deep

In [2]: artist = input('Please enter the artist name:")

Please enter the artist name:The Box Tops



Lyrics Analysis

Topic Modeling (Cluster n=20) Word Cloud Visualization
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Results | ALS

Basic Recommendation
e RMSE on test: 6.24
e Average frequency: 3
e RMSE with average frequency:

e Result for user-id 101:

Predicted Unlistened Tracks for user=id 101:

6.23

Recommendation for tracks listened >=2
e RMSE on test: 9.21
e Average frequency: 6
e RMSE with average frequency: 9.23

e Result for user-id 101:

Predicted Unlistened Tracks for user-id 101:

tmmm e ———— frmmmmEEss s s ————— $mmmmmmm - * R - = e - - ———mmm———a L +
|artist_name title |prediction| |artist_name |title | prediction |
o ——— —_ e ] —_——— —_——— - S o O Y O T T O O Y O D A +
|Mad Sin Gone Forever |3.1878967 | |Phil Coulter |The Lark In The Clear Alr |8.0294895 |
|Martin Simpscon |Pretty Sarc / Long Steel Rail [3.1667562 | |Martin Simpscon | Pretty Sarc / Long Steel Rail | 7. 4865417 |
|paft Punk Indo Silver Club |3.064618 | |Ricky Fante | Smile |7.235166 |
| The Had Lads I'm 50 Glad I Fell In Love With You|2.976268 | | Joe Zawinul |Arrival In Mew York (LP Version)|&6.903735 |
|ficky Fante Smile |2.805521 | |Laika | starey Hight | &.567858T |
| Rancid Motorcyele Ride (Album Version) |2.790095 | |Pareial Arts |cruising |6.1623225 |
| Tohn Mellencamp |How More Than Ever |2.785403 | | Tiefschwarz | Issst (Dub) |6. 039297 |
|Whitecross Living On The Edge |2.7731323 | | Ironik | Paudrait Pas | 6. 02530596 |
| Amon Amarth Horth Sea Storm |2.7556224 | | Teenage Head |First Time |6.010382 |
| The Midway State|I Enow |2.740594 | |Wynton Marsalis Septet|The Cat In The Hat Is Back |5.E748407 |
Fmm —r— ————————— e — E— +—— - - ——t———— - - ———————— e Fmmm e ——— +

only showing top 10 rows

only showing top 10 rows

Conclusion: Many songs have only been listened once. Although the second model has a higher RMSE on test, it behaves
relatively better when compared to average frequency. Since those tracks are listened more, we infer those songs can better
represent users’ tastes. The circled items might be of highest recommendation quality.



Results | Content-Based Filtering
Simulation of A New User Recommendation

In [27]: # Check the same songs in tfidf and word2vec models
tfidf_w2v = recommend_tfidf.merge(recommend_w2v, how="inner', on=["artist_name’, 'title'])
print (tfidf_w2v)

artist_name title
In [1]: title = input('Please enter the song name:"') @  The Box Tops _ soul Deep
1 The Hollies I've Got A Way Of My Own
2 Four Tops You Keep Running Away
Please enter the S0ONg name:Soul DE‘E‘D 3 Otis Redding T Love You More Than Words Can Say (LP Version)
4  The Guess Who Diggin' Yourself
In [2]:  artist = input('Please enter the artist name:') In [28]: # Check the same songs in tfidf and topic models

tfidf_lda = recommend_tfidf.merge(recommend_lda, how='inner', on=['artist_name’, 'title'])

Please enter the artist name:The Box Tops [

artist_name title

@ The Box Tops Soul Deep

. - 1 Four Tops You Keep Running Away

In [2@] # Recommend based on tfldf 2 Joe Cocker Just To Keep From Drowning

recommend _tfidf = recommend title(title, artist, cosine sim_tfidf)

In [29]: # Check the same songs in word2vec and topic models
w2v_lda = recommend_w2v.merge(recommend_lda, how='inner', onz['artist_name', 'title'])
In [21]: | # Recommend based on word2vec print(w2v_lda)

recommend w2v = recommend title(title, artist, cosine sim w2v)

artist_name title

@ The Box Tops Soul Deep

1 Four Tops You Keep Running Away

In [22]: # Recommend based on tDpiC 2 Hall & Oates Breath Of Your Life

recommend_lda = recommend title(title, artist, cosine_sim lda)
In [38]: # Check the same songs in three models

tfidf_w2v_lda = tfidf_w2v.merge(recommend_lda, how='inner', on=['artist_name", 'title'])
print(tfidf w2v lda)

artist_name title
@ The Box Tops Soul Deep
1 Four Tops You Keep Running Away



Results | Content-Based

Lyrics

Darlin' | don't know much

I know | love you so much

A lot depends on your touch

My love is a river running soul deep

A way down inside me it's a soul deep
Too big to hide, can't be denied

Love is a river running soul deep

| worked myself to euphoria

Just to show | adore ya

There's nothing | wouldn't do for ya

Cause my love is a river running soul deep
A way down inside me it's a soul deep
Too big to hide, can't be denied

Love is a river running soul deep

All'l ever, ever hoped to be

Depends on your love for me

If you believe me, if you should leave me
I'd be nothing but a jilted male

| know darned well, | could tell, but

| don't know much

I know | love you so much

A lot depends on your touch

My love is a river running soul deep

A way down inside me it's a soul deep
Too big to hide, can't be denied

Love is a river running soul deep

My love is a river running soul deep

A way down inside me it's a soul deep
My love is a river running soul deep

A way down inside me it's a soul deep
My love is a river running soul deep

A way down inside me it's a soul deep

Source: LyricFind
Songwriters: Per Gessle

Soul Deep lyrics @ Kobalt Music Publishing Ltd.

Filtering

Lyrics

You keep running away

Though | beg you not to leave

But still you won't stay

Darlin' you keep running away

Tear my heart apart every step of the way

You're here today and gone tomorrow

Leavin' this heart of mine in sorrow

Now you come around every now and then

Long enough to hurt me, and then you're gone again

Darlin' you, you keep running away

Oh, | begged you not to leave, you never stay
Now you, you keep running away

Leavin' me here to face another lonely day

To you all of this is just a game

But each time you came here, | feel the pain
But I've got so much love for you

| keep wanting you, no matter what you do

All'l want to do is take care of you

Everything | have in my life, I'll share with you
This soul of mine has been possessed by you
Darling my heart has been obsessed with you
Just look at me, I'm not the man, | used to be

| used to be proud, | used to be strong

But all of that's changed girl, since you come along
Your lovin' sweetness is my weakness

Though | need you, dear, | just can't keep you near

Running away, running away, running away
Running away, running away, running away

Each time you go, the hurt comes callin’
My days become nights, darlin'

My nights become so much longer
You're in my life, you're in my heart

But I can't get you, get you into my arms
Darlin' you, you keep runnin' away
Darlin' you, you just keep runnin’ away

Source: LyricFind

(St

™

[FYOU DON'TWANT MY LOVE

> & »
o

Songwriters: Jr. / Brian Holland / Edward Holland / Edward / Jr. Holland / Lamont Dozier / Lamont Herbert Dozier

You Keep Running Away lyrics © Sony/ATV Music Publishing LLC

L




Built a recommender systems using a dataset with 1,019,318 unique users and 384,546 unique songs.

ALS algorithm for our collaborative filtering
"  For old users with enough listening history to generate personalized recommendations.

Conclusion

Content-based recommender: combined artist similarity and lyric similarity (LDA, Word2vec and TF-IDF
modeling)

=  For new users with only one or a few search and listening history.

= Similar songs for the current song will be recommended.

Considering that Spotify has about 2 million monthly active users, our project is close to the monthly
magnitude of the industry-level.




Region Zone
Region is permanent Zone is permanent

us-east1 (South Carolina) v us-east1-b

Machine configuration

Lessons Learned

General-purpose Memory-optimized Compute-optimized

Machine types for common workloads, optimized for cost and flexibili

Series

* Cloud memory .

° Spa rk CO nfigu ratio n a n d d ata types Powered by Intel Skylake CPU platform or one of its predecessors
Machine type

n1-highmem-16 (16 vCPU, 104 GB memory)

vCPU Memory

conf = (conf.set('spark.executor.memory', '30G') 16 104 GB

.set('spark.driver.memory', '30G')
.set('spark.driver.maxResultSize', '30G'))

(

CPU platform and GPU

Container
Deploy a container image to this VM instance. Learn more

# Cache those to save memory ot disk

——M.  New 30 GB standard persistent disk
Image

@ Ubuntu 16.04 LTS

train_df = train df.cache()
valid df = valid_df.cache()
test_df = test_df.cache()




Further Steps

Hybrid system New ldeas

More dimensions of recommendation is always User2vec
better Graph algorithms
Google naturally combined plenty of Content-based filtering using music audio

recommendation strategies in its wide and deep
recommendation system with neural networks
and ensemble methods.
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